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Measurements have been carried out over the temperature range 380-525° K
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using a four-cell hot-wire thermal-conductivity apparatus. At the lower
temperatures the thermal conductivities of HZO and DZO are identical, but
at the highest temperature the conductivity of DZO is larger by 8-9 parts
per thousand. Conductivities of the equimolar mixtures lie midway between
the conductivities of the pure components. Results are analyzed to test a
recent hypothesis that & resonant exchange of rotatioqal quanta causes the
thermal conductivity of a polar gas torseem anomalously low in relation to
its viscosiﬁy. It is concluded that this phenomenon is probably not im-
portant in determining the thermal conductivity of water vapor. A ¢/ 7THs K.
INTRODUCTION

Our understanding of heat conduction in polyatomic gases has been
considerably enhanced by the recent theoretical studies of Mason and Mon-
chick.l Starting with the formel kinetic theory of Wang Chang and Uhlenbeck2
and Téxman,3 they have derived explicit expressions for the thermal conduc-
tivity of polyatomic gases. B& §ystematically including terms involving

inelastic collisions, they derived the modified FEucken expression4’5’6 a

s
a first approximation and, as & second approximation, an expression de-
pendent on the relaxation times for the various internal degrees of free-

dom. Their result may be written
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Here A 1s the thermal conductivity, n 1is the viscosity, M is the

moleculer weight, p i1s the density, and D is the average coefficient

int

for the diffusion of internal energy, while C and Cint are the
trans

translational and the internasl contributions to the molar heat capacity.
Zk is the number of collisions for relaxation of the kU internal
mode, while Ck is the heat capacity associated with that mode.

The first two terms in Eq. (1) are simply the modified Eucken ap-
proximation, while the third term is important only for small collision
numbers. In small, rigid polyatomic molecules these are associated with
rotational relaxation. (In flexible molecules vibrational relaxation .
times may also be small.)

For nonpolar gases Dyt is commonly assumed to be equal to the
self-diffusion coefficient. With this assumption O0'Neal and Brokaw7’8’9
have analyzed experimental recovery-factor measurements (in essence a
direct determination of the quantity %M/ncv) s0 &s to obtain collision
numbers for rotational relaxation. Since collision numbers for nitrogen,
oxygen, carbon dioxide, methane, and hydrogen were found generally in
accord with values obtained by other experimental methods, it was concluded
that the approximate theory embodied in Eq. (1) is substantially correct.
Furthermore, it seems that these collision numbers are determined by the
following factors: (1) the molecular mass distribution, (2) the strength
of the Intermoleculsr attractive forcés, and (3) thehmolecular asymmebry.

The thermal conductivities of highly polar gases such as hydrogen
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fluoride, water, and ammonisa appear to be anomolously low in relation to
thelr viscositles. Mason and Monchickl suggest that this effect is
largely due to a resonant exchange of rotational energy, presumed probable
on grazing self-collisions of polar molecules. Hence, a grazing collision
with exchenge 1s equivalent to a head-on collision without exchange insofar
as the transport of the rotationsl quantum is concerned. Thus, the atf-
fusion coefficient for internal energy, Dint in ¥q. (lL is smaller than

the self-diffusion coefficient, Dll’ and is given by the expression

- _?El_ (2)
int ~ 1 + &

D
where 8 1s a correction term calculated from the theory of resonant
collisions.

Mason and Monchick’ give expressions for & for linear dipoles and
also for several types of symmetric tops. The salient factors determin-
ing ® are apparent in thelr result for spherical tops:
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Here (a4) is the mean value of a dimensionless quantity involving the
rotational quentum numbers, taken to be 0.44. Furthermore, u 1s the

dipole moment, h 1is Plantk's constant, 9 is the kinetic~theory diameter

_ [01,1)¥ /2 X
characteristic of diffusion |= ojQ\™ in the notation of refer-
ence lv)’ k is the Doltzmann donstant, m 1s the molecular mass, R is

the universal gas constant, and I 1is the molecular moment of inertisa.
(It might be noted that & for linear dipoles is given by an expression

identical to Eq. (3) but for the factor 5x/16.)



As already noted, the collision number is dependent on the moleculsr
mass distribution. This dependence may be characterized as

471
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where Uﬂ is viscosity collision diameter (E G[b(z’z)*J / in the notation
of reference lé).

Tt bccurred to us that Mason and Monchick's postulate regarding the
imporpange of the resonant exchange of rotational guanta might be tested
by measuring the thermal conductivities of deuterated and ordinary polar
gases; HéO and D20 were chosen because they were readily available.

From Egs. (1)-(4) it is seen that isotropic substitution of deuterium
for ordinary hydrogen will affect the thermal conductivity through in-
creases in molecular weight (10%), internal heat capacity (10-15%), and
moments of inertia (80-100%). Thus the moments of inertis are profoundly
altered. In the absence of the resonant phenomenon we would expect the
thermal conductivity of Ho0 to be somewhat larger than that of DZO' This
1s a consequence of the smaller mass of ordinary water (see Eq. (1) =
viscpsities are only proportional to Ml/z) and also of the smaller
moments of inertia which lead to a larger collision number for rotational
relaxation (see Eq. (4)). These factors should outweigh the effect of the
somewhat greater heat capacity of DZO‘

On the cther hand, the resonani correction depends inversely on
moment of inertia (Eq. (3)) and, hence, is larger for H,0. As a conse-
quence, if the resonant exchange of rotational quanta does indeed oceur,
the conductivities of HZO and DZO should be very nearly equal; the con-

ductivity of DZO may actually be slightly larger.



Mason and Monchlck's postulate regarding resonant exchange of rota-
tional energy can be subjected to a further qualitative test. The effect
is based on exact resonance; that 1s, an exact matching of rotational
energy levels. Consider now an equimolar mixture of H20 and DZO‘ In such
a gas one-half of the collisions are self-collisions of HéO or DZO in
which resonant exchenge of rotational quanta may occur. The remaining
collisions are between Hy0 and Dp0. In these collisions there is no
matching of rotational levels so there should be no resonant exchange.
Consequently, we might expect such a mixture to have a thermal conduc-
tivity larger than either of the pure constituents. This argument must
remain qualitative, however, because we have as yet no analogous theory
for mixtures.

The present experiments were initiated to test these theoretical
notions regarding the thermal conductivity of polar gases. (A pre-
liminary result using & rather crude apparsatus has already been reported.ll)

Conductivities of E,O0 and D

2 2O were measured at 381.2, 426.1 478.0 and

525.6° K, while the thermal conductivity of the equimolar mixture was
measured at the two highest temperatures only. After completion of the
present experimentation and datas anmlysis we learned of the recent work
of Vargaftik and Zaitseval2 who have measured the thermal conductivities
of HZO and Dzo from ]00-500° C. The present measurements are in qualita-
tive, but not quentitative, agreement with the Russian work.
EXPERTMENTAT
Apparatus and Procedure

The hot-wire thermal-conductivity apparatus has been described in

some detaill by Coffin and O'Nealls. Briefly, it consists of two palrs of



hot-wire cells connected as elements of a constant-current Wheatstone
bridge. The voltage unbalance produced when gases of unequal thermal
conductivity are introduced into the pairs of cells is measured. The
instrument responds to the reciprocal of the thermal conductivity,

E - Eper = b(% B 7\1 ) (5)

ref

Here E 1s the voltage unbalance with a gas of unknown conductivity in
one pair of cells and a reference gas in the other pair; Eref is the
voltage with the reference gas in both cells. A and %ref are the
thermal conductivities of the unknown and reference gases, respectively,
while b is a constant characteristic of the apparatus (it may be
slightly temperature dependent). For this work helium and argon were
used as calibrating gases. The conductivities assumed for helium and
argon are discussed in the next section.

.HZO and DZO vapors were supplied to the cells at a pressure slightly
above atmospheric from ampules thermostatted in a bath at 104° ¢ (a
boiling salt solution). Connecting lines were heated with electrical
heating tape to prevent condensation. The gas handling system was in
other respects conventional.

In addition to the measureﬁents on ordinary and heavy water vapors,
the thermal conductivity of nitrogen was determined at all four tempera-
tures. Also, air, oxygen, and carbon dioxide were measured at 478.0° K.
In gencral, nitrogen served as the retf'erence gas except that DZO and
the equimolar HZO'DZO mixture were measured against ordinary water. Thus

these small emf's were measured with enhanced precision.
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Experimental voltages relative to argon are recorded in Table I. An
extra significant figure is given for the isotopic waters to reflect the
measured voltage differences among them. The voltages relative to nitrogen
were reproducible to about 0.001 mv.

Thermal Conductivities of the Calibrating Gases Helium and Argon

Thermal conductivities for the calibrating gases were assigned after
considering experimental viscosity and thermal conductivity data on
helium and argon. Because helium and argon are monatomic gases, it is
possible to compute conductivity from viscosity through the rigorous

theoretical rela.tionl4

15 R f)(\S)
A= T u | ;Tgy. (6)
1

The functions f&s) and fgs) are very slowly varying functions of tem-

perature that differ only slightly from unity. Equation (6) is rigorous
through the third Chepman-Enskog approximation and has been experimentally
verified for helium and argon within a few parts per thousand’. The
factor fis)/fés) was calculated asswming an exponential-6 force law
with appropriate force constantsls; over the temperature range of in-
terest this quotient 1s greater than unity by 1-3 parts per thousand for
argon and 3-4 parts per thousand for helium. o
In essence, large scale plats of experimental thermal conductivity

were constructed and smooth curves faired through the datal6-1°

» glving

the greatest weight to values computed from recent viscosity measurements,

since these data have the highest precision and accuracy.
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The conductivities selected for calibration, as well as values at
even increments of 100° K are given in Table IT. Figures 1 and 2 show
the departures of experimental thermal conductivities from the tabulated
values for helium and argon, respectively. The data indicated as solid
symbols represent actual thermal conductivity measurements, while the
open symbols are derived from viscosity measurements and show con-
siderably less scatter.

Experimental Results

The thermal conductivities derived from Tables I and II by means
of Eg. (5) are presented in Table III. Agaln an extra significant fig-
ure has been retained for the isotopic waters so as to indicate relation-
ships among them. The values of Table III are generally in accord with
previous determinations in the literature. This is illustrated in
Fig. 3, where the present data on water vapor and nitrogen are compared

20 and Geib and Schifer(21),

with the measurements of Vargaftik and Oleschuk
The agreement is generally satisfactory, although our datum for waﬁer
at the highest temperature seems to be a bit low.

Algo included in Table III are thermal conductlvities of H;0 and Dy0
interpolasted from the recent data of Vargaftik and Zaitsevalz. The agree-
ment in the case of H20 is entirely satisfactory with deviation from
0.5 to 1.3% In the case of D0, however, there seem to be more serious
discrepancies with deviations of as much as 3.5% at the lowest tempera-
ture (deviations are systematic rather than random). The apparatus used
by Vargaftik and Zaitseva.l2 had a single hot-wire thermal-conductivity
cell so that Héo and DZO were of necessity measured in separate runs.

In contrast, in our experiments we have compared HZO and DO directly

2



against one another. Consequently, we believe our results on Dy0 are to
be preferred - especially with regard to the values relative to HZO'
ANALYSIS AND DISCUSSION

The experimental data on the pure gases were analyzed as follows:
Eq. (1) was assumed correct and used to calculate the collision number
Zrot and resonant correction & required to reproduce the experimental
data. Although we have made no assumption as to the absolute magnitudes
of these parameters, we have assumed that the relative magnitudes may be
calculated from theoretical expressions in terms of molecular masses,
moments of inertia, dipole moments, etc. of the two molecules (values
used are shown in Table IV).

Certain temperature-dependent quantities that are needed, such as
viscosity and heat capacity, are shown in Table V. Viscosities of
hesvy water were computed assuming the viscosity collision cross section
of DZO is 3% larger than that of Héo. This was deduced from the vis-

cosity measurements of Bonilla, Wang, and Weinerl8

and is qualitatively
in accord with the somewhet higher dipole moment of DZO'

As was mentioned in the introduction, Mason and Monchick?! developed
expressions for the resonant correction for linear dipoles and symmetric
tops. They suggest that slightly asymmetric tops can be treated in the
following menner. If IA is the moment of inertia about the dipole
axis (in this case, the figure axis of the molecule) and IB and IC

are the other two moments, one uses the symmetric top formulas replacing

I, by (LBIC)l/z.
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From Table IV it is clear that HEO and DZO ere in fact highly asymmetric
tops (IB and I, differ by a factor of three). In the absence of any
better procedure, we assume that HéO and DZO can be treated as slightly
asymmetric tops and find that they must then be classified as near-

spherical tops. TFor such molecules the resonant correction is

7
2
2 1/2 1.1.)1/2
5=§z<a4>(_3_ ukT) ro_wl s B
6 16 opk int IA(IBIC)1/4 4 A

(Note that Eq. (7) reduces to Eq. (3) if the moments of inertia are equal.)
From Eq. (7) and Taeble IV (and assuming the diffusion collision cross
sectlon for DZO is also 3% larger than for H20) we find

8y o8y o = 0-3613 Cy

2 2 nt

/c. . (8)
int
HZO DZO

Egs. (1) and (4) suggest & simple average moment of inertia may be

used to calculate a mean Z;l « Hence we have assumed

ot

ZDZO/ZHZO = 0.5933. (9)

Finally, the dimensionless quantity lel/q involving the self-
diffusion coefficlent was computed as (6/5)(A*)?%. The quantity (A¥) is
a ratio of collision integrals (essentially the retio of the viscosity
and diffusion cross sections) and is quite insensitive to temperature and
the details of the intermolecular force law, at least for spherically
symmetric potentials. 1In the absence of experimental information on self-
diffusion in water vapor, we have taken (A*) from calculations for =
modified (angle independent) Stockmeyer potentialzs. This is the only

place in the analysis where we have had to make any assumption about the

intermolecular force law.
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Collision numbers for rotational relaxation and resonant corrections
deduced from the data analysis are presented in Table V. The collision
numbers for HoO (One to three collisions) seem low for a molecule with
such small moments of inertia. (Methane, for example, requires perhaps
10-15 collisionss’g.) However, these low values can perhaps be rationalized
by noting that the largd dipole moment causes a large deviation from
spherical symmetry in the intermolecular force field and consequently
promotes energy transfer between rotation and translation.

The resonant corrections are seen to be somewhat smaller than values
computed from Eq. (7), especially at the lower temperastures. The deriva-
tion of Eq. (7) involves among other approximations the replacement of
summations by integrations. In the case of ammonia, Monchick and M’asonl
carried out the direct summation and found that the analytic expression
for the resonant correction gave too high a value at low temperature.

A similer deviation for water might have been anticipated. All in all,
the data on pure Hz0 and DpO tend to confirm Mason and Monchick's postulate
regarding the importance of resonant transfer of rotational quanta in
reducing the heat conductivity of highly polar gases.

Unfortunately, the data on the H20~D20 mixtures seem to negate this
conclusion. It is a simple matter to compute the thermal conductivities
of HZO and D,0 using:the collision numbers of Table V but omitting the
resonant correction (values so computed are shown in Teble VI). The
effect of the resonant correction is substantiasl since it reduces the
calculated conductivity of DZO by 10% and H20 by almost 20%.

In HZO - Dzo mixtures the collisions between HZO and Dzo molecules

should not involve resonant exchange and should consequently be
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characterized by these nonresonant conductivities. Although we have no
rigorous mixture theory for polyatomic gases, we may meke a reasonable
predlction based on monatomic gas theory. The rigorous expression24 for
a binary mixture of isotopic monatomic gases of nearly equal mass is, to

a very good approximation,

|l 3]
[AVEAV)

(10)

l—_ =

xmix

>’|>¢

2x,x
'77"'

>’I><
l

Here xq and xp are the mole fractions of the component geses, while
Kl and Kz are their thermal conductivities. The quantity Klz is
defined by Eq. (8.2-34) of Reference 10. For isotopic species the equa-

tion reduces to

1/2
Mg =% (2 + )\2)] : (11)

Clearly, the first and third terms of Eq. (10) correspond to self
collisions, whereas the second term arises from collisions between the
ﬁnlike species. Thus it would seem a reasonable approach to compute

klz from Eq. (11) using the nonresonant conductivities of Table VI.
Thermal conductivities of the equimolar mixtures can then be obtained
from Eq. (10) using the measured velues for HoO and Dg0. Results in
Table VI show the computed mixture conductivities exceed the experi-
mental values by about 8% This is far beyond the range of any con-
ceivable experimental uncertéinty. As a matter of fact, the experimental

mixture conductivities fall almost exactly midway between the conductiv-

ities of the pure components.
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In our opinion, this suggests rather strongly that a resonant e%s
change of rotational quanta does not play an important role in determin-
ing the thermal conductivity of water vapor. Admittedly Eq. (10) is not
rigorous for mixtures of polyatomic gases (a correct formulation would be
considerably more complicated and involve, among other‘things, relaxation
times among the like and unlike molecules explicitly). Nongtheless, we
feel that Eq. (10) must be a good approximation for mi#tures of isotopically
substituted polyatomic gases because of its simple collisional interpreta-
tion. In computing %12 from fictitous nonresonant conductivities of the
pure gases, we are tacitly assuming that the collision number for D20 re-
laxing HZO is the same as for the self-relaxation of HZO (with a similar
assumption for HZO relaxing DZO)' This is probably not strictly correct,
but if Eq. (4) is any guide, the assumption is in error by no more than
10% (due to the mass difference - more likely 5%, since an average mass
is probably appropriate). It would seem t0 us to be & most remarkable
coincidence indeed if the collision numbers for the unlike interactions
were smaller than those for self-collisions so as to exactly compensate
for absence of resonant exchange of rotational quanta in HZO - DZO col-
lisions.

CONCLUDING REMARKS

0 and DO are

Although the experimental conductivities of pure H2 o

consistent with the postulatel that a resonant exchange of rotational
quanta is important in determining the thermal conductivity of polar
gases, the date on the equimolar HéO-DZO mixture seem to refute this ides.
Nonetheless, the fact that the conductivity of weter vapor appears anoma-

lously low in relation to its viscosity needs an explanation. Tentatively,
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we suggest that exchenge of rotational energy on grazing collisions is
indeed important, but it is essentially classical rather than quantum
mechenicel. Since a large dipole moment causes a long range asymmebry
in the intermolecular force field, it should promote such exchange.
However, if the phenomenon is classical, exact matching of rotational
energy levels is not a requirement, and exchange between dlssimilar
polar molecules should occur.

These conclusions are not definitive because of two theoretical
shortcomings: we do not as yet have adequate theories for asymmetric
top molecules or polar gas mixtures. The first shortcoming is over-
come most easily by studying gas pairs for which the theory does exist -
linear dipoles, such as HCl and DCl, and symmetric tops, such as NHg
and NDS. We hope %o initiate such experiments shortly. In the mean-
time, perhaps a theory for gas mixtures will be forthcoming.
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TABLE I. Experimental emf measurements relative to argon (mv).

Gas Temperature, °K
381.2 426.1 478.0 525.6

He 5.030 5.1867 5.1886 5.208

Né 1.730 1.800 1.791 1.802

DZO 0.806¢p 1l.1265 1.4133 1.6408

5,0 0.808, | 1.1285 | 1.386, | 1.604,
0.5 HZO - 0.5 D20 1.4000 1.6264

02 2.091

COZ 0.980

Air 1.861
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TABLE II. Thermsl conductivities of helium and
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argon assumad for calibration purposes

(microcalories em~1 sec-l Ok-1),

Tempg;ature, Helium Argon
300 370.9 42,42
381.2 437.4 51.26
400 452.3 53.27
426.1 472.8 55.82
478.0 51z2.8 60.79
500 529.5 62.85
525.6 548.6 65.12
600 603. 4 71.51
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TABLE III. Experimental thermal conductivities

(microcalories cm”

- 19 -

1 gec~l ok-1y,

Gas Temperature, °K
381.2 426.1 478.0 525.6
D,0 59.7, 69.14 80.07 90.15
H,0 59.7, 69.1, 79.5, 89.34
0.5 Hy0 - 0.5 Dg0 79. 77 89.85
Ny 73.6 80.6 87. 4 - 93,7
0o 94.3
€Oy 72.9
Air 88.9
®D,0 57.6 66.8 78.8 90.6
®H,0 59.2 68.2 79.1 90.0

aReference 12.
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TABLE IV. Moleculer properties of Hy0 and D30.

H,0 D,0
8Moments of Inertia, 1.0224 1.833
gn cm@x10%° b1 9180 bz.841
2.9404 5.674
Molecular weight 18,0160 20,029
CDipole moment, esu-cmx1018 1.844 1.861

8A. S. Friedman and L. Haar, J. Chem. Phys. 2z,

2051 (1954).
Prigure axis.

¢L. G. Groves and S. Sugden, J. Chem. Soc. 1935,

971.
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TABLE V. Data analysis for pure HZO and DZO‘

Temperature, o
381.2 426.1 478.0 525.6
Vi . a b b b B
iscosity of Hy0, ppoise 127.4 143.2 164.0 184.9
c
(Cspt/R) Hy0 1.60069 1.64771 1.70781 1.76743
D0 1.75277 1.83355 1.93036 2.02233
d, 6
Dll/n( (a* )) 1.316 1.320 1.325 1.327
2ot Hp0 2.7 2.5 2.3 2.0
D,0 1.6 1.5 1.3g 1.2
BHZO expt. .48 .40 .38 . 36
calc. .64 .23 .44 .38
8D20 expt. .16 .13 .12 11
calc. .21 .17 .14 .12

&7. Hilsenrath et al, Tables of Thermal Properties of Gases, National
Bureau of Standards Circular 564 (1955).

bs, Kestin and H. E. Wang, Physica 26, 575 (1960).
®See Footnote &, Table IV.

dRef‘erence 23.
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TABLE VI. Thermal conductivities for analysis

of the data on HZO-DZO mixtures

(microcalories em™t sec™l x~1).

Gas | Pemperature, %K

478.0| 525.6
H,0, (expt.) 79.5 | 89.4
Hy0, nonresonant (calc.) 98.3 [111.1
D50, (expt.) 80.0 { 90.2
D50, nonresonant (calc.) 88.8 [100.3
A ps nonresonant (cale., Eq. (11)) 93,7 |[105.8
Equimolar Hp0-DoO (calc., Eq. (10)) 86.2 | 97.1
Equimolar H,0-D,0 (expt.) 79.8 | 89.9

2
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